91直播

Combinatorial geometric flows and special metrics

发布日期:2019-07-26点击数:

报告人:  林爱津(国防科技大学)


 期: 2019年7月27


 间: 上午10:30


 : 理科楼 LD202


 要: Geometric flows are powerful tools to find canonical metrics on a given manifold. For example, R. Hamilton introduced the Ricci flow, which had been used to prove the uniformization theorem and solve the Poincaré conjecture. In addition, there are other geometric flows such as the Yamabe flow introduced by R. Hamilton, the Calabi flow introduced by E. Calabi and so on. Motivated by the idea of Hamilton, Feng Luo introduced the combinatorial Ricci flow and the combinatorial Yamabe flow. In 2012 Huabin Ge introduced the combinatorial Calabi flow in his thesis. In this talk, we will discuss related problems and our work on the combinatorial geometric flows.


报告人简介:林爱津,国防科技大学数学系副教授,应用数学教研室副主任,美国《数学评论》评论员。2006年毕业于91直播 ,2013年毕业于北京大学数学科学91直播 获博士学位。研究方向为微分几何及其应用,研究成果发表于Advance in Mathematics, Journal of Functional Analysis, Journal of Geometric Analysis等SCI期刊。


91直播 联系人:周恒宇


欢迎广大师生积极参与!


关于我们
91直播-黑丝直播-黄色直播 的前身是始建于1929年的91直播 理91直播 和1937年建立的91直播 商91直播 ,理91直播 是91直播 最早设立的三个91直播 之一,首任院长为数学家何鲁先生。