91直播

Graphical-model Based High Dimensional Generalized Linear Models

李亚光(中国科学技术大学)

发布日期:2021-03-31点击数:

91直播:李亚光中国科学技术大学

时间:20214310:50开始

地址:数统91直播 LD202


摘要:We consider the problem of both prediction and model selection in high dimensional generalized linear models. Predictive performance can be improved by leveraging structure information among predictors. In this paper, a graphic model-based doubly sparse regularized estimator is discussed under the high dimensional generalized linear models, that utilizes the graph structure among the predictors. The graphic information among predictors is incorporated node-by-node using a decomposed representation and the sparsity is encouraged both within and between the decomposed components. We propose an efficient iterative proximal algorithm to solve the optimization problem. Statistical convergence rates and selection consistency for the doubly sparse regularized estimator are established in the ultra-high dimensional setting. Specifically, we allow the dimensionality grows exponentially with the sample size. We compare the estimator with existing methods through numerical analysis on both simulation study and a microbiome data analysis.


简介:李亚光,中国科学技术大学管理91直播 博士后 ,2018年毕业于中国科学技术大学,获得统计学博士学位,后在多伦多大学Dalla Lana公共卫生91直播 从事博士后研究,先后访问过新加坡国立大学和约克大学。目前为中国科学技术大学管理91直播 博士后。主要从事高维数据分析,变点检测和个性化医疗等领域的研究。在Electronic Journal of Statistics, SCIENCE CHINA-MathematicsStatistics in Medicine等国际知名学术期刊上发表多篇论文。


邀请人:夏小超


欢迎广大师生积极参与!


关于我们
91直播-黑丝直播-黄色直播 的前身是始建于1929年的91直播 理91直播 和1937年建立的91直播 商91直播 ,理91直播 是91直播 最早设立的三个91直播 之一,首任院长为数学家何鲁先生。