91直播

当前位置: 91直播 > 91直播中心 > 学术活动 > 正文

Decentralized ADMM for Factorization-based Low-rank Matrix Estimation

发布日期:2025-04-17点击数:

91直播:练恒 教授 (香港城市大学)

时间:2025年04月25日 10:30-

地点:数统91直播 LD402


摘要:We consider the problem of recovering a low-rank matrix in a distributed setting, based on a convex loss function and non-convex matrix factorization. We use a linearized and decentralized alternating direction method of multipliers (ADMM) algorithm to compute the consensus solution. We establish local linear convergence (up to the approximation error when the unstrained solution is not exactly low-rank) of the method despite the optimization problem is non-convex due to the factorization. Numerical examples are presented to illustrate the performance.


邀请人: 夏小超


欢迎广大师生积极参与!



关于我们
91直播-黑丝直播-黄色直播 的前身是始建于1929年的91直播 理91直播 和1937年建立的91直播 商91直播 ,理91直播 是91直播 最早设立的三个91直播 之一,首任院长为数学家何鲁先生。